A tail of two distributions: Or, what should energy price forecasters try to forecast (and how)?

5th IAEE Asian Conference
February 14-17 2016
University of Western Australia Business School

George J. Gilboy
MIT Center for International Studies
ggilboy@mit.edu

Matthew Ironside

Rebecca Doran-Wu

Note: Views presented here are those of the authors, and do not represent the views of any university, corporation, or organization. This is a draft. Not for circulation or citation without permission of the authors. The authors thank Prudence Thompson, Warren Volk-Makarewicz, and Luke Whyte for comments that helped us improve our thinking. Any faults are our own.
A tail to tell: standard econometric models fail us

1. Forecast failure is the rule
 • Tail risk hurts the most

2. Standard models offer little help
 • Poor track record – no confidence
 • point forecast, MSE focus – wrong problem
 • Industry has a different problem –
 • Define plausible range of outcomes
 • Recognize risk of structural shifts
 • Prepare for those stress events

3. We offer 3 part alternative
 • Step 1: Parsimonious model of uncertainty / range
 • Step 2: Combination: one model is not enough
 • Step 3: Recursive model updates/re-assurance
Bayesian Forecast of Henry Hub Gas Price

1. Model design and operation
 - R Language – four quarter forecast, updated monthly.
 - In this simple case, variables = Gas Demand + Gas Production + Gas Inventories.
 - Data from EIA (direct link into R via API)
 - Start with a standard linear model: Henry Hub = XB + ε (B = vector of parameters).
 - Uniform Dirichlet distribution prior.

2. Output/Results
 - Fan chart
 - 2015 HH forecast range of ~US$2.00 to US$3.80/MMBtu
 - Actual stays within band for the 12 month out of sample forecast period (quarterly average).

3. Analysis
 - Awareness of downside risk – the forecast is not “wrong” when actual is in lower probability region. (95% interval))
 - Weather event – out of range at end 2015.
 - Signpost – watch inventories and demand as HH competitiveness overseas declines.
Wait – we’re not done! Combination / recursive approach

1. Combination forecasts perform better
 - Macroeconomic model
 - Consensus forecast, prediction market
 - Cost of supply analysis
 - Productivity monitoring
 - Policy monitoring

2. Transform forecast use & decision making
 - Bound the (current) uncertainty range
 - Develop signposts to monitor
 - Plan to be robust under uncertainty
 - Cost focus
 - Capital discipline
 - Opportunity for upside

3. Recursive forecasting process:
 - Updating / re-assuring models (parameters change)
 - Combining forecasts beyond an average value and model uncertainty.
Next steps in our research

• **Benchmarking**
 • Increased focus on benchmarking. To improve first you must acknowledge current gaps in your performance.

• **New Techniques**
 • Review emerging forecasting techniques – neural networks, artificial intelligence (AI), prediction markets, online search data.

• **Apply to other areas**
 • Expand forecasting capability to other aspects of business, i.e. capital costs, LNG shipping, operations etc.

• **Data**
 • Access to data, timely analysis and ease of use for decision making are a competitive advantage in industry.
“ONLY A SITH DEALS IN ABSOLUTES”

(and Why You Shouldn’t Believe It)